Succinct Arguments

Lecture 08:
Polynomial Commitments
from Bilinear Groups

Polynomial Commitments

Recall: Polynomial Commitments

- Completeness: Whenever p(z) = v, **R** accepts.
- **Extractability**: Whenever **R** accepts, **S**'s commitment **cm** "contains" a polynomial *p* of degree at most *D*.
- **Hiding**: cm and π reveal *no* information about p other than v

Recall: Cryptographic Groups

Cyclic Group

A set
$$\mathbb{G} := \{1, g, g^2, ..., g^{p-2}\}$$

- g is the generator of G
- p is the *order* of \mathbb{G}
- DL: Given an arbitrary $h = g^x$, it is difficult to compute x

Warmup: Improved Pedersen-based Commitment Scheme

Recall: Pedersen Commitments

$$\mathsf{Setup}(n \in \mathbb{N}) \to \mathsf{ck}$$

1. Sample random elements $g_1, ..., g_n, h \leftarrow \mathbb{G}$

$$\mathsf{Commit}(\mathsf{ck}, m \in \mathbb{F}_p^n; r \in \mathbb{F}_p) \to \mathsf{cm}$$

1. Output **cm** := $g_1^{m_1}g_2^{m_2}...g_n^{m_n}h^r$

Binding: from DL

Hiding: output is uniformly distributed

Additive: given comms to m_1, m_2 , can get comm to $\alpha m_1 + \beta m_2$

Recall: PC scheme from Pedersen Comms

$$\mathsf{Setup}(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})$$

1. $ck \leftarrow Ped. Setup(d + 1)$. Output (ck, rk) = (ck, ck).

$$\mathsf{Commit}(\mathsf{ck}, p \in \mathbb{F}_p^{d+1}; r \in \mathbb{F}_p) \to \mathsf{cm}$$

1. Output $cm := Ped \cdot Commit(ck, p; r)$

$$\mathsf{Open}(\mathsf{ck}, p, z \in \mathbb{F}_p; r) \to (\pi, v)$$

1. Output $(\pi := (p, r), v := p(z))$

Check(rk, cm,
$$z$$
, v , π) $\rightarrow b \in \{0,1\}$

1. Check cm = Ped . Commit(ck, p; r) and p(z) = v.

Better PC scheme from Pedersen Comms?

Setup $(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})$ 1. $\mathsf{ck} \leftarrow \mathsf{Ped} . \mathsf{Setup}(d+1)$. Output $(\mathsf{ck}, \mathsf{rk}) = (\mathsf{ck}, \mathsf{ck})$.

Commit(ck, $p \in \mathbb{F}_p^{d+1}$; $r \in \mathbb{F}_p$) \to cm 1. Output cm := Ped. Commit(ck, p; r)

Open(ck, $p, z \in \mathbb{F}_p; r) \to (\pi, v)$ 1. ???

Check(rk, cm, z, v, π) $\to b \in \{0,1\}$

Can we use PIOPs to design PC schemes?

Goal: Want to prove evaluation of f(X) at point z

- We want to show that f(z) = v.
 - Equivalently, f(z) v = 0
 - Does this remind you of something?

Recall: ZeroCheck PIOP

Key Idea: Committed ZeroCheck

We set $H := \{z\}$. Vanishing poly $v_H(X) = X - z$.

Are we done?

No! We're actually worse off: we need to give evaluation proofs for f and q!

Idea: What if we hid τ in the exponent?

Warmup 2: Trusted-Setup Pedersen-based PC

Trusted Setup Pedersen Commitments

$\mathsf{Setup}(n \in \mathbb{N}) \to \mathsf{ck}$

- 1. Sample random elements $g_0, ..., g_n, h \leftarrow \mathbb{G}$
- 1. Sample $\tau \leftarrow \mathbb{F}_p$. Output $\mathbf{ck} := (g, g^{\tau}, g^{\tau^2}, ..., g^{\tau^{n-1}}, h)$

$$\mathsf{Commit}(\mathsf{ck}, m \in \mathbb{F}_p^n; r \in \mathbb{F}_p) \to \mathsf{cm}$$

1. Output **cm** := $g^{m_1}g^{\tau \cdot m_2}...g^{\tau^{n-1} \cdot m_n}h^r$

Binding: from SDH (assumption related to Computational Diffie—Hellman)

Hiding: output is uniformly distributed

Additive: given comms to m_1, m_2 , can get comm to $\alpha m_1 + \beta m_2$

Trusted Setup Pedersen PC

Setup $(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})$ 1. $\mathsf{ck} \leftarrow \mathsf{Ped} . \mathsf{Setup}(d+1)$. Output $(\mathsf{ck}, \mathsf{rk}) = (\mathsf{ck}, \mathsf{ck})$.

Commit(ck, $p \in \mathbb{F}_p^{d+1}$; $r \in \mathbb{F}_p$) \to cm 1. Output cm := Ped. Commit(ck, p; r) = $g^{p(\tau)}h^r$

Open(ck, $p, z \in \mathbb{F}_p; r) \to (\pi, v)$

Check(rk, cm, z, v, π) $\rightarrow b \in \{0,1\}$ 1. ???

Key Idea: Committed ZeroCheck

We have evaluations at τ in the exponent.

Need to check $f(\tau) - z = q(\tau) \cdot v_H(\tau)$.

How to multiply evaluations and check equality?

Groups allow addition in the exponent

$$g^x \cdot g^y = g^{x+y}$$

How to get multiplication?

We want operation op such that

$$\mathsf{op}(g^x, g^y) = g^{xy}$$

Unfortunately we don't know of any such group + operation combinations

Bilinear Groups/ Pairing-friendly Groups

Bilinear groups

- $(p, \mathbb{G}, g, \mathbb{G}_T, e)$
 - G is called the base group
 - \mathbb{G}_T is called the target group
 - Both have same prime order p, but are different groups!
 - \mathbb{G} , \mathbb{G}_T are both multiplicative cyclic groups of order p,
 - g is the generator of G.
 - $e(g^x, g^y) : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ is called a *pairing*
 - Bilinear: $e(g^x, g^y) = e(g, g^{xy}) = e(g^{xy}, g) = e(g, g)^{xy}$

Kate-Zaverucha-Goldberg Commitment Scheme

KZG Polynomial Commitment

 $\mathsf{Setup}(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})$

1. $\mathsf{ck} \leftarrow \mathsf{Ped} \cdot \mathsf{Setup}(d+1)$. Output $(\mathsf{ck}, \mathsf{rk}) = (\mathsf{ck}, (g, g^{\tau}))$.

 $\mathsf{Commit}(\mathsf{ck}, f \in \mathbb{F}_p^{d+1}) \to \mathsf{cm}$

1. Output cm := Ped . Commit(ck, f) = $g^{f(\tau)}$

 $\mathsf{Open}(\mathsf{ck}, f, z \in \mathbb{F}_p) \to (\pi, v)$

1. Output $(\pi, v) := (\text{Ped.Commit}(\text{ck}, q(X)) := \frac{f(X)}{X - z}) = g^{q(\tau)}$

Check(rk, cm, z, v, π) $\rightarrow b \in \{0,1\}$ 1. ???

KZG Polynomial Commitment

 $\mathsf{Setup}(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})$

1. $\mathsf{ck} \leftarrow \mathsf{Ped} \cdot \mathsf{Setup}(d+1)$. Output $(\mathsf{ck}, \mathsf{rk}) = (\mathsf{ck}, (g, g^{\tau}))$.

 $Commit(ck, f \in \mathbb{F}_p^{d+1}) \to cm$

1. Output cm := Ped . Commit(ck, f) = $g^{f(\tau)}$

 $\mathsf{Open}(\mathsf{ck}, f, z \in \mathbb{F}_p) \to (\pi, v)$

1. Output
$$(\pi, v) := (\text{Ped.Commit}(\text{ck}, q(X)) := \frac{f(X)}{X - z}) = g^{q(\tau)}$$

Check(rk, cm, z, v, π) $\rightarrow b \in \{0,1\}$

1. Check $e(\operatorname{cm} \cdot g^{-v}, g) \stackrel{?}{=} e(\pi, g^{\tau-z})$

Completeness

Check(rk, cm, z, v, π) $\rightarrow b \in \{0,1\}$

1. Check
$$e(\mathbf{cm} \cdot g^{-\nu}, g) \stackrel{?}{=} e(\pi, g^{\tau-z})$$

If Sender is honest, then we can rewrite the check as follows:

$$e(\text{cm} \cdot g^{-\nu}, g) \stackrel{?}{=} e(\pi, g^{\tau - z})$$

$$e(g^{f(\tau) - \nu}, g) \stackrel{?}{=} e(g^{q(\tau)}, g^{\tau - z})$$

$$e(g, g)^{f(\tau) - \nu} \stackrel{?}{=} e(g, g)^{q(\tau) \cdot (\tau - z)}$$

$$e(g, g)^{f(\tau) - \nu} \stackrel{?}{=} e(g, g)^{\frac{f(\tau) - \nu}{\tau - z} \cdot (\tau - z)}$$

$$e(g, g)^{f(\tau) - \nu} \stackrel{?}{=} e(g, g)^{f(\tau) - \nu}$$

Knowledge Soundness

• **Goal:** We want adv. sender \mathscr{A} to be able to produce a valid proof only if it knows f such that \mathbf{cm}_f .

• Intuition:

- Assume $f(z) \neq v$.
- Then $q(X) = \frac{f(X) v}{X z}$ is a *rational* function, and not a polynomial.
- Remember that G only allows additions in the exponent, not multiplications or divisions (without pairing)
- So \mathscr{A} can't produce commitment to q(X)
- Formalized via a proof in the Generic Group Model
 - GGM says that whenever \mathscr{A} produces a group element, it must provide an explanation in terms of linear combination of previous group elements.

KZG Demo

"Type-3" Bilinear groups

- $(p, \mathbb{G}_1, g, \mathbb{G}_2, h, \mathbb{G}_T, e)$
 - \mathbb{G}_1 and \mathbb{G}_2 are called the base groups
 - \mathbb{G}_T is called the target group
 - $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ are all multiplicative cyclic groups of order p,
 - g is the generator of \mathbb{G}_1 , h is the generator of \mathbb{G}_2 .
 - $e(g^x, h^y) : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is called a *pairing*
 - Bilinear: $e(g^x, h^y) = e(g, h^{xy}) = e(g^{xy}, h) = e(g, h)^{xy}$